Careers

We’re always seeking talented people who share our vision. Click here to explore opportunities in a variety of disciplines across the globe.

See More >
Leadership Blogs

Get to know our leaders. Read their unique perspectives on how they are working to change the trajectory of health.

See More >
Generation Care™

We’re committed to showing the heart of the caregiver’s experience and providing the kind of support and information that will make a difference.

See More >
Patient Engagement

Janssen partners directly with patients and caregivers as we develop medicines, improve clinical trials, and create educational materials and support programs.

See More >
Research & Development

Our research pipeline is rich with transformational science reflecting our unique approach to innovation.

See More >
R&D Data Science

Using data science and digital health to reimagine the discovery and development of medicines to advance our mission of bringing transformative therapies to patients.

See More >
  • An African American man holds a baby who looks back up at him
    An African American man holds a baby who looks back up at himAn African American man holds a baby who looks back up at him

    Janssen
    Retina’sResearch
    DarestoEnvision
    a World of
    Healthy Sight

Item 1 of 1

Our global research teams are determined to deliver breakthrough treatments that meet the needs of patients affected by retinal diseases worldwide. At Janssen, we are on a mission to restore and preserve vision in patients with blinding retinal diseases by discovering and developing transformational therapies that have an unequivocal advantage over standard of care and to prevent, treat, or cure diseases with critical global unmet needs.

We aspire to a future in retina that offers life-changing therapies for those losing sight.

Justin Scheer – Vice President, Gene Therapy and Gene Delivery Platforms

Our unique approach

At Janssen, we are doing things differently

When Janssen commits to a new area, we go at it with the full ambition to be a leader, leveraging the resources of Johnson & Johnson to make a meaningful impact for patients. The retinal disease space is no exception, and it’s an area ripe for innovation in which we can employ our multiple platforms to deliver the best science and capabilities across Johnson & Johnson to enable breakthrough therapies.

We plan to bring therapies to patients with unprecedented speed and efficiency in rare and common retinal diseases:

  • Rare inherited retinal diseases (IRDs), which are caused by mutations in individual genes, including XLRP and achromatopsia1,2
  • Common retinal diseases, which are prevalent causes of blindness in aging populations, including diabetic macular edema, diabetic retinopathy, and age-related macular degeneration3,4

To do this, we are rapidly building internal capabilities and forming critical partnerships with academic institutions and advocacy organizations, alongside partnerships with leading clinical institutions.

The potential promise of gene therapy

Pioneering gene therapy innovations is a top priority for Janssen. Beginning with the eye, Janssen is investigating gene therapies across varied mechanisms of action, building the case for future applications to other parts of the body.

The gene therapies we are exploring are for a variety of rare and more common retinal diseases, including:

  • Inherited retinal diseases, like achromatopsia and X-linked retinitis pigmentosa (AAV-RPGR, AAV-CNGB3, AAV-CNGA3)
  • Geographic atrophy, a late-stage and severe form of age-related macular degeneration (HMR59)

Gene therapy is a promising modality for replacing mutation-bearing genes and for the production of therapeutic proteins, and has the potential to improve health outcomes for patients worldwide.

Thumbnail of advancements of gene therapy
JAN120_Gene_Therapy_preview_576p_201103a
Video Player is loading.
Current Time 0:00
Duration -:-
Loaded: 0%
Stream Type LIVE
Remaining Time 0:00
 
1x

The human body consists of trillions of cells.1,2

They are the basic building blocks of all living things.1,3

The control center of the cell is known as the nucleus.3

It houses chromosomes which are made up of DNA.2,3

Genes are made up of DNA, which contains instructions for making proteins.2

Messenger RNA, or mRNA, is produced from DNA as an intermediary.2

Proteins are molecules that have many… different functions within the body2

such as acting as catalysts, providing structure, and supporting growth.1,2,4

Sometimes, there are changes in a gene’s DNA sequence, known as a genetic mutation.5

These changes to the DNA sequence result in the cell receiving incorrect messages…

causing it to produce either faulty or missing proteins.

This may disrupt normal development or cause a medical condition.5

Mutations can be inherited from a parent...

or can emerge spontaneously during a person’s life.5

Some DNA mutations are harmless,

however, others can result in a variety of genetic diseases such as

cystic fibrosis, down syndrome and inherited retinal diseases.5,6,7

Gene therapy is a novel approach to treating genetic disorders…

because it introduces a functional gene into the cell

which overcomes the mutated version to help the body function as intended,

stopping disease progression or fighting the disease at its source.8,9

Safe delivery vehicles, such as engineered adeno-associated viruses, also known as AAVs,

can be used to deliver a healthy copy of a dysfunctional gene into a cell lacking one.8

These engineered viruses are chosen because they have been modified

to safely deliver the healthy gene to the affected cells without further replication.8

The healthy genes are packaged inside the vector with the gene to be corrected…

…which depending on the disease could be a very different gene.

The AAV is produced in manufacturing laboratories

and ultimately administered to the patient.

Vectors can be delivered systemically or locally by injection.7,8

The vectors target and enter specific cells8

where they release the healthy gene.7

The desired gene forms a stable structure independent of the natural DNA7,8,10

which the target cells use to make the correct message for functional proteins.7,11

Gene therapy targets the source of the disease,

facilitating the body to synthesize its own functional proteins.8,9

It allows the production of the functional protein for extended periods,

making gene therapy a potential single dose,

long-term treatment for genetic disorders.7,9,12


1. Essentials of Cell Biology. 2.5 Proteins Are Responsible for a Diverse Range of Structural and Catalytic Functions in Cells. Springer Nature . Available at [https://www.nature.com/scitable/ebooks/essentials-of-cell-biology-14749010/122996980/] Accessed Dec 2020
2. Tefferi A. Genomics basics: DNA structure, gene expression, cloning, genetic mapping, and molecular tests. Semin Cardiothorac Vasc Anesth. 2006;10(4):282-290. doi:10.1177/1089253206294343
3. Mijaljica D, Prescott M, Devenish RJ. Nibbling within the nucleus: turnover of nuclear contents. Cell Mol Life Sci. 2007;64(5):581-588. doi:10.1007/s00018-007-6395-5
4. Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics. 2007;5(2):77-85. doi:10.1016/S1672-0229(07)60018-7
5. Clancy S, 2008; Nature Education, Springer Nature. Available at <https://www.nature.com/scitable/topicpage/genetic-mutation-441/> Accessed Dec 2020.
6. Epstein C. Down Syndrome, Molecular Genetics of. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Wiley. 2006:561-571
7. Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011 May;12(5):341-55.
8. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs. 2017;31(4):317-334.
9. Goswami R, Subramanian G, Silayeva L, et al. Gene Therapy Leaves a Vicious Cycle. Front Oncol. 2019;9:297. Published 2019 Apr 24. doi:10.3389/fonc.2019.00297
10. Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21(4):255-272. doi:10.1038/s41576-019-0205-4
11. Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev. 2016;3:16034. Published 2016 May 25. doi:10.1038/mtm.2016.34

Science and innovation beyond gene therapy

In addition to gene therapy, our research teams are vigorously investigating a multitude of therapeutic platforms from topical treatment to systemic therapy to intravitreal injections for more common retinal diseases like diabetic retinopathy, diabetic macular edema, and wet age-related macular degeneration.

Our cutting-edge research and therapies in clinical trials span the vast retina landscape. And we’re just getting started.

We stand by those who are fighting to restore and preserve sight with courageous science to match their will.

A man wearing a mask looks into a microscope
Hide referencescollapse
  1. Arafah A, Arafah B, Arafah A. gene therapy for the treatment of x-linked retinitis pigmentosa: a review. Eur J Mol Clin Med. 2020;7(8):6027-6035.

  2. Lowndes R, Molz B, Warriner L, et al. Structural differences across multiple visual cortical regions in the absence of cone function in congenital achromatopsia. Front Neurosci. 2021;15.

  3. Thomas RL, Halim S, Gurudas S, Sivaprasad S, Owens DR. IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res Clin Pract. 2019;157:107840. doi:10.1016/j.diabres.2019.107840

  4. Wong W, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106-e116.